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Macroscopically entangled light 
fields
Byoung S. Ham

A novel method of macroscopically entangled light-pair generation is presented for a quantum laser 
using randomness-based deterministic phase control of coherent light in a coupled Mach–Zehnder 
interferometer (MZI). Unlike the particle nature-based quantum correlation in conventional quantum 
mechanics, the wave nature of photons is applied for collective phase control of coherent fields, 
resulting in a deterministically controllable nonclassical phenomenon. For the proof of principle, 
the entanglement between output light fields from a coupled MZI is examined using the Hong-
Ou-Mandel-type anticorrelation technique, where the anticorrelation is a direct evidence of the 
nonclassical features in an interferometric scheme. For the generation of random phase bases 
between two bipartite input coherent fields, a deterministic control of opposite frequency shifts 
results in phase sensitive anticorrelation, which is a macroscopic quantum feature.

Since the seminal paper by Einstein, Polodsky, and Rosen (EPR) in 19351, the so-called spooky action of nonlo-
cal correlation has been intensively studied for the fundamental understating of quantum mechanics1–16. For 
direct evidence of nonclassical features in entangled photon pairs, the Bell inequality violation2, Franson-type 
nonlocal correlation3, and Hong-Ou-Mandel (HOM) anticorrelation4 have been investigated over the decades in 
both noninterferometric5–9 and interferometric schemes10–16. In these studies, not only entangled photon sources 
from spontaneous parametric down conversion (SPDC) processes17, but also independent light sources from 
such as quantum dots and sunlight18 have been used for demonstrating nonclassical features via coincidence 
measurements. However, all of these studies have focused on the particle nature of photons, even though coher-
ence is the bedrock for entanglement generation. Providing entangled photon pairs is an essential step toward 
quantum information processing via controlled-NOT gate operations19, entanglement swapping20, quantum 
teleportation21, and unconditionally secured key distribution22. Multiphoton-based bipartite entanglement of 
a N00N state23 or a Schrodinger’s cat24 is essential for quantum sensing applications to beat the standard quan-
tum limit. Unfortunately, however, there is no recipe for entangled photon-pair generation. The generation of 
macroscopic quantum states with large N > 100 may not be technically possible with current technologies25.

Recently, the fundamental physics of quantumness or nonclassicality has been investigated for a HOM dip26, 
photonic de Broglie wavelength27, and Franson-type nonlocal correlation28 using the wave nature of photons, 
where the origin of anticorrelation in a HOM dip is rooted in a π/2 phase shift between the entangled photons26,29. 
The origin of nonlocal correlation has been discovered in the basis randomness for a coupled bipartite system 
via quantum superposition30. Unlike the particle nature of photons limited to coincidence detection, however, 
the wave nature of photons emphasizes coherence. Here, coherence represents a typical interference such as 
in Young’s double slits. Such coherence has also been demonstrated in an MZI for single photons31. Collective 
phase control of an atomic ensemble has already been demonstrated for quantum interface32–36. Likewise, col-
lective phase control of ensemble photons from a laser is a key technique in the present manuscript, resulting in 
inherent macroscopic quantum manipulation via the orthonormal basis randomness of the coupled system27–30. 
Here, we present a novel theory of macroscopically entangled light-pair generation using the randomness of the 
phase basis in an MZI. Considering the coherence de Broglie wavelength (CBW)27, the origin of macroscopi-
cally entangled light pairs is the superposition between MZI phase bases26–30, where randomness is an essential 
requirement for g (1) coherence37. According to the basic quantum physics, the second-order intensity correla-
tion g (2) is closely related with the first-order correlation g (1) in coherence optics, where g (2) = g (1) + 138. Here, 
Heisenberg’s uncertainty principle does not limit a quantum mechanically coupled system as it does in EPR1 
and Popper’s though experiment39.
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Results
Figure 1 shows schematics of the macroscopically entangled light-pair generation in an MZI by providing its 
phase basis randomness. As is already known, basis randomness is an essential requirement of quantum superpo-
sition between bipartite systems such as in Young’s double slits and an MZI37. Once basis randomness fails, there 
is no quantum superposition but instead classical superposition40. Here, it should be noted that the conventional 
understanding of classicality for the individuality of coupled photons has been discussed in Bell’s inequality 
theorem2. In that sense, coherence optics may or may not belong to classical physics depending on the phase 
choice, as discussed for anticorrelation26,29.

Figure 1 is for pure coherence optics, where the first MZI in Fig. 1a is a preparation stage for the random 
phase bases between two input fields E1 and E2 by classically controlling the symmetric phases ζ and ζ ′ . The 
original input field E0 in Fig. 1a is for typical laser light, and a single photon case is also included for the present 
analysis. For the present scope, however, we set E0 as a commercially available laser light for the discussion of 
macroscopic quantum features. Figure 1b is a phase-controlled light pulse sequence for E1 and E2 , where E1 and 
E2 are designed to be symmetrically detuned by ±� (blue and red) , respectively, in a frequency domain across 
the center frequency f0 of E0 (green). Here, Ij represents the corresponding intensity of the field Ej , where the 
detuned fields ( E1 and E2 ) are alternatively coupled with the original field E0 (see Fig. 1c,d). For example, if E1(E2) 
is turned on, E2(E1) must be turned off and replaced by E0 . For the input fields E1 and E2 , the symmetric phase 
pair, ζ and ζ ′ , is provided by the product of the detuning ±� and the pulse duration T/2: ζ = �T/2; ζ′ = −�T/2 . 
Figure 1c shows how to generate symmetric detuning ±� using an acousto-optic modulator (AOM) driven 
by an rf-field generator. Figure 1d shows how both oppositely diffracted pulses are alternatively selected and 
combined with the original one, as seen in Fig. 1b. All controls are classical, deterministic, and compatible with 
current optoelectronic technologies.

Theory.  Based on Fig. 1, we now present a novel theory of macroscopically entangled light-pair generation. 
Using matrix representations for coherence optics, the following relations are obtained (see Section 1 of the Sup-
plementary Information):
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Figure 1.   Schematic of macroscopic entangled field generation. (a) A Mach–Zehnder interferometer for Hong-
Ou-Mandel type proof. (b) Alternative pulse sequence. (c) Symmetric detuning. (d) Superposition for basis 
randomness.
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where ζ = �T/2 , and ζ ′ = −ζ . The detuning � is with respect to the center frequency f0 of the input field E0 , 
as shown in Fig. 1c, by an acousto-optic modulator (AOM) driven by an rf frequency at frf (= �) , in which 
f = f0 +� and f ′ = f0 −� . As a result, the corresponding intensities of the output fields are obtained:

where sin
(

ζ ; ζ ′
)

 stands for a mutually exclusive state, i.e., either sin (ζ ) or sin
(

ζ ′
)

 at a time via superposition 
with the original field as shown in Fig. 1c,d. The symmetric detuning control of ±� by an AOM is for toggle 
switching between f  and f ′ as shown in Fig. 1b. Thus, each mean value of the output intensity becomes uniform 
at �IA� = I0/2 and �IB� = I0/2 if ζ = (2n+ 1)π/2 and ζ ′ = −ζ , i.e., �T = (2n+ 1)π/2 , where T/2 is the pulse 
duration of E1 and E2 . Once again, the modulated and superposed fields, E1 and E2 , are accompanied by E0 for 
basis randomness, as shown in Fig. 1b,d.

Finally, the intensity product R of the output fields in Fig. 1a is as follows:

In Eq. (5), R =
[

1− sin2 (ϕ)
]

 , corresponding to the coincidence detection in the particle nature of photons, 
is satisfied for the specific condition of symmetric phase control with ζ = (2n+ 1)π/2 and ζ ′ = −ζ , where this 
result is deterministic and a single-shot measurement. Although the mean values of IA and IB are constant at 
I0/2 , the product R sinusoidally oscillates as a function of ϕ . This is the quintessence of the present theory for 
nonclassical features of anticorrelation in a macroscopic regime, resulting in:

where conventional variable τ for coincidence measurements is now replaced by ϕ for coherence measurements 
due to its higher sensitivity of coherent photons. Equation (6) is robust with respect to the laser bandwidth δω 
( cδω−1 ≫ �) and thus shows a definite evidence of coherence-based quantum correlation in an interferometric 
scheme. The degree of quantum correlation in Fig. 2 is deterministically measured by the control of phase ϕ.

Here, our concern is about the inputs fields of Eα and Eβ whether they are entangled or not for Fig. 2. It should 
be noted that eiζ and eiζ ′ in Fig. 1a are mutually exclusive as shown in Fig. 1b. If both inputs Eα and Eβ are rep-
resented in a form of |ψ� = |Eα�

∣

∣Eβ
〉

 for a field(photon)-path relation under the mutually exclusive condition, 
the following equation is obtained (see Section 2 of the Supplementary Information):

Equation (7) shows Bell states. Thus, the input fields Eα and Eβ are macroscopically entangled via random 
choice of the phase ζ and ζ′(= −ζ) with a specific value. Because MZI has no discrepancy between a particle and 
a wave, the inputs of Eα and Eβ are satisfied for both a single photon and a coherent laser field. This is the essence 
of the macroscopic entanglement generation in the present paper.

Figure 2 shows numerical calculations for Eq. (6). As analyzed above, each output field’s mean value is fixed 
at I0/2 by an alternative selection of ±π

2
 phase-shifted ζ and ζ ′ using ±� frequency control. Here, the intensity 

correlation g (2)(ϕ) covers both classical ( g (2)(ϕ) ≥ 0.5 ) and quantum ( g (2)(ϕ) < 0.5 ) regimes depending on the ϕ 
values. This is a unique feature of the wave property governed by the field’s wavelength �-dependent path-length 
difference. Considering an actual bandwidth of coherent light E0 , however, Eq. (6) may result in dephasing-caused 
partial washout of the g (1) effect in g (2) . Unlike the SPDC case with random phases among entangled photon 
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Figure 2.   Numerical calculations for intensity correlation g (2)(ϕ) . The phase ϕ is within coincidence detection 
ϕ ∈

{

ζ, ζ ′
}

 . The blue line is a classical lower bound.
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pairs due to the intrinsic frequency detuning swapping29, the bandwidth-caused dephasing in Eq. (6) is far less 
sensitive to dephasing. Thus, the present method of the macroscopically entangled light-pair generation is robust 
to laser sources. Experimental results will be presented elsewhere.

Discussion.  In Fig.  1a, the specific condition for ζ = ±π/2 and ζ′ = −ζ is to compensate the BS-caused 
phase shift of π/241, resulting in uniform intensity distribution for Eα and Eβ via random field bunching between 
E1 and E2:

Due to the symmetric cosine function, Eqs. (8) and (9) have no effect on the symmetric phase shift of ±� , 
resulting in Iα = Iβ regardless of ϕ . This is equivalent to random swapping of symmetric frequency detuning in 
the SPDC-generated photon pairs29. Thus, Eα and Eβ impinging on a BS exhibit macroscopic quantum features, 
similar to a HOM dip with entangled photon pairs as derived in Eq. (7). For the proposed coherence anticorrela-
tion in Fig. 1, the interference between EA and EB is φ- dependent, resulting in anticorrelation at ϕ = ±π

2
(2n+ 1) . 

Thus, the ζ-controlled MZI in Fig. 1a acts as a quantum device whether the input field is a single photon or 
coherent light. As already discussed, anticorrelation in a HOM dip naturally satisfies the phase basis relation in 
a particular system26,29. For a BS, the phase bases for anticorrelation are ±π/2 , while for an MZI, it is 0 and π . 
In Fig. 1a, the phase basis is modified due to the ζ condition from ±nπ to ±π/2.

According to Heisenberg’s uncertainty principle or de Broglie’s wave-particle duality42, conventional emphasis 
on the particle nature of photons is a matter of preference depending on the light source. Recently, a dynamic 
(encounter) delayed-choice method has been demonstrated for the wave property of a photon43. Unlike SPDC-
generated entangled photon pairs, the coherent light source in Fig. 1 has the benefits of determinacy and control-
lability. Due to such benefits of coherence optics, the confirmed entangled light pair Eα and Eβ can be extracted 
from the MZI system by inserting a BS into each arm, while keeping the same anticorrelation measurements 
for EA and EB in Fig. 1a. This on-demand control of quantum correlation based on the coherent field-based 
intrinsic property of the wave nature of photons is the fundamental difference and novelty of the present paper. 
Compared with a typical laser system, this entangle light pair is called a quantum laser. Quantum mechanics is 
not as mysterious anymore in a coupled system, but instead can be definite and imperative as Einstein dreamed.

Regarding potential applications, the proposed method can be applied for a quantum laser whose light pair is 
macroscopically entangled, satisfying a N00N state with unbounded N. Compared with the MZI-superposition-
based coherent de Broglie wavelength27,30, the quantum laser has an additional benefit of robustness in phase 
fluctuations. However, the unbounded N in the quantum laser is post-selective by using the particle nature of 
photons, otherwise bipartite entangled photon states (N = 2) dominate according to Poisson distribution (dis-
cussed elsewhere). The quantum laser may be applied for a quantum Lidar in quantum sensors, quantum keys 
in a quantum key distribution, and even a photonic qubit in quantum computations. Compared with amplitude-
limited modulation in conventional quantum information, the proposed method may open the door to quantum 
phase modulation as well as quantum wavelength division multiplexing. These applications are unprecedented 
and macroscopic in nature.

Conclusion
In conclusion, a novel method for macroscopically entangled light-pair generation was proposed, analyzed, and 
numerically demonstrated for both fundamental understanding of quantum mechanics and potential applications 
in future coherence-based quantum technologies. Unlike conventional understanding on quantum mechanics 
based on the particle nature of photons, the control of a coherent photon ensemble in the present analysis is 
phase deterministic in an MZI system for macroscopic quantum features. Owing to the wave nature of photons, 
coherence has also an inherent benefit of collective control, resulting in macroscopic quantum manipulation. 
The proposed method is compatible with coherence optics. The essential requirement for macroscopic quantum 
features is quantum superposition based on random phase bases, satisfying indistinguishability in g (1) coherence 
as well as g (2) correlation. In other words, manipulation of macroscopic indistinguishability is a fundamental 
bedrock of quantum features that are achievable coherently. As defined in Bell’s inequality, g (1) coherence has to 
be distinguished from classicality based on individual particles.
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