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Gaussian elimination
Gaussian elimination, also known as row reduction, is an algorithm in linear algebra for solving a system
of linear equations. It is usually understood as a sequence of operations performed on the corresponding matrix
of coefficients. This method can also be used to find the rank of a matrix, to calculate the determinant of a
matrix, and to calculate the inverse of an invertible square matrix. The method is named after Carl Friedrich
Gauss (1777–1855). Some special cases of the method - albeit presented without proof - were known to Chinese
mathematicians as early as circa 179 AD.

To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix
until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of
elementary row operations:

Swapping two rows,

Multiplying a row by a nonzero number,

Adding a multiple of one row to another row.

Using these operations, a matrix can always be transformed into an upper triangular matrix, and in fact one that
is in row echelon form. Once all of the leading coefficients (the leftmost nonzero entry in each row) are 1, and
every column containing a leading coefficient has zeros elsewhere, the matrix is said to be in reduced row
echelon form. This final form is unique; in other words, it is independent of the sequence of row operations
used. For example, in the following sequence of row operations (where multiple elementary operations might be
done at each step), the third and fourth matrices are the ones in row echelon form, and the final matrix is the
unique reduced row echelon form.

Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan
elimination. Some authors use the term Gaussian elimination to refer to the process until it has reached its
upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear
equations, it is sometimes preferable to stop row operations before the matrix is completely reduced.
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The process of row reduction makes use of elementary row operations, and can be divided into two parts. The
first part (sometimes called forward elimination) reduces a given system to row echelon form, from which one
can tell whether there are no solutions, a unique solution, or infinitely many solutions. The second part
(sometimes called back substitution) continues to use row operations until the solution is found; in other words,
it puts the matrix into reduced row echelon form.

Another point of view, which turns out to be very useful to analyze the algorithm, is that row reduction produces
a matrix decomposition of the original matrix. The elementary row operations may be viewed as the
multiplication on the left of the original matrix by elementary matrices. Alternatively, a sequence of elementary
operations that reduces a single row may be viewed as multiplication by a Frobenius matrix. Then the first part
of the algorithm computes an LU decomposition, while the second part writes the original matrix as the product
of a uniquely determined invertible matrix and a uniquely determined reduced row echelon matrix.

There are three types of elementary row operations which may be performed on the rows of a matrix:

1. Swap the positions of two rows.

2. Multiply a row by a non-zero scalar.

3. Add to one row a scalar multiple of another.

If the matrix is associated to a system of linear equations, then these operations do not change the solution set.
Therefore, if one's goal is to solve a system of linear equations, then using these row operations could make the
problem easier.

For each row in a matrix, if the row does not consist of only zeros, then the leftmost nonzero entry is called the
leading coefficient (or pivot) of that row. So if two leading coefficients are in the same column, then a row
operation of type 3 could be used to make one of those coefficients zero. Then by using the row swapping
operation, one can always order the rows so that for every non-zero row, the leading coefficient is to the right of
the leading coefficient of the row above. If this is the case, then matrix is said to be in row echelon form. So
the lower left part of the matrix contains only zeros, and all of the zero rows are below the non-zero rows. The
word "echelon" is used here because one can roughly think of the rows being ranked by their size, with the
largest being at the top and the smallest being at the bottom.

For example, the following matrix is in row echelon form, and its leading coefficients are shown in red:

It is in echelon form because the zero row is at the bottom, and the leading coefficient of the second row (in the
third column), is to the right of the leading coefficient of the first row (in the second column).

A matrix is said to be in reduced row echelon form if furthermore all of the leading coefficients are equal to
1 (which can be achieved by using the elementary row operation of type 2), and in every column containing a
leading coefficient, all of the other entries in that column are zero (which can be achieved by using elementary
row operations of type 3).
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Suppose the goal is to find and describe the set of solutions to the following system of linear equations:

The table below is the row reduction process applied simultaneously to the system of equations and its
associated augmented matrix. In practice, one does not usually deal with the systems in terms of equations, but
instead makes use of the augmented matrix, which is more suitable for computer manipulations. The row
reduction procedure may be summarized as follows: eliminate x from all equations below L1, and then
eliminate y from all equations below L2. This will put the system into triangular form. Then, using back-
substitution, each unknown can be solved for.

System of equations Row operations Augmented matrix

The matrix is now in echelon form (also called triangular form)

The second column describes which row operations have just been performed. So for the first step, the x is

eliminated from L2 by adding 32L1 to L2. Next, x is eliminated from L3 by adding L1 to L3. These row operations

are labelled in the table as

Once y is also eliminated from the third row, the result is a system of linear equations in triangular form, and so
the first part of the algorithm is complete. From a computational point of view, it is faster to solve the variables
in reverse order, a process known as back-substitution. One sees the solution is z = −1, y = 3, and x = 2. So
there is a unique solution to the original system of equations.

Instead of stopping once the matrix is in echelon form, one could continue until the matrix is in reduced row
echelon form, as it is done in the table. The process of row reducing until the matrix is reduced is sometimes
referred to as Gauss–Jordan elimination, to distinguish it from stopping after reaching echelon form.
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The method of Gaussian elimination appears - albeit without proof - in the Chinese mathematical text Chapter
Eight: Rectangular Arrays of The Nine Chapters on the Mathematical Art. Its use is illustrated in eighteen
problems, with two to five equations. The first reference to the book by this title is dated to 179 CE, but parts of
it were written as early as approximately 150 BCE.[1][2] It was commented on by Liu Hui in the 3rd century.

The method in Europe stems from the notes of Isaac Newton.[3][4] In 1670, he wrote that all the algebra books
known to him lacked a lesson for solving simultaneous equations, which Newton then supplied. Cambridge
University eventually published the notes as Arithmetica Universalis in 1707 long after Newton had left
academic life. The notes were widely imitated, which made (what is now called) Gaussian elimination a
standard lesson in algebra textbooks by the end of the 18th century. Carl Friedrich Gauss in 1810 devised a
notation for symmetric elimination that was adopted in the 19th century by professional hand computers to
solve the normal equations of least-squares problems.[5] The algorithm that is taught in high school was named
for Gauss only in the 1950s as a result of confusion over the history of the subject.[6]

Some authors use the term Gaussian elimination to refer only to the procedure until the matrix is in echelon
form, and use the term Gauss–Jordan elimination to refer to the procedure which ends in reduced echelon
form. The name is used because it is a variation of Gaussian elimination as described by Wilhelm Jordan in
1888. However, the method also appears in an article by Clasen published in the same year. Jordan and Clasen
probably discovered Gauss–Jordan elimination independently.[7]

Historically, the first application of the row reduction method is for solving systems of linear equations. Here
are some other important applications of the algorithm.

To explain how Gaussian elimination allows the computation of the determinant of a square matrix, we have to
recall how the elementary row operations change the determinant:

Swapping two rows multiplies the determinant by −1

Multiplying a row by a nonzero scalar multiplies the determinant by the same scalar

Adding to one row a scalar multiple of another does not change the determinant.

If Gaussian elimination applied to a square matrix A produces a row echelon matrix B, let d be the product of
the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of A is
the quotient by d of the product of the elements of the diagonal of B:

Computationally, for an n × n matrix, this method needs only O(n3) arithmetic operations, while solving by
elementary methods requires O(2n) or O(n!) operations. Even on the fastest computers, the elementary
methods are impractical for n above 20.

A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a
matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix,
if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].
Now through application of elementary row operations, find the reduced echelon form of this n × 2n matrix.
The matrix A is invertible if and only if the left block can be reduced to the identity matrix I; in this case the
right block of the final matrix is A−1. If the algorithm is unable to reduce the left block to I, then A is not
invertible.
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For example, consider the following matrix:

To find the inverse of this matrix, one takes the following matrix augmented by the identity and row-reduces it
as a 3 × 6 matrix:

By performing row operations, one can check that the reduced row echelon form of this augmented matrix is

One can think of each row operation as the left product by an elementary matrix. Denoting by B the product of
these elementary matrices, we showed, on the left, that BA = I, and therefore, B = A−1. On the right, we kept a
record of BI = B, which we know is the inverse desired. This procedure for finding the inverse works for square
matrices of any size.

The Gaussian elimination algorithm can be applied to any m × n matrix A. In this way, for example, some 6 × 9
matrices can be transformed to a matrix that has a row echelon form like

where the stars are arbitrary entries, and a, b, c, d, e are nonzero entries. This echelon matrix T contains a
wealth of information about A: the rank of A is 5, since there are 5 nonzero rows in T; the vector space spanned
by the columns of A has a basis consisting of its columns 1, 3, 4, 7 and 9 (the columns with a, b, c, d, e in T),
and the stars show how the other columns of A can be written as linear combinations of the basis columns. This
is a consequence of the distributivity of the dot product in the expression of a linear map as a matrix.

All of this applies also to the reduced row echelon form, which is a particular row echelon format.

The number of arithmetic operations required to perform row reduction is one way of measuring the
algorithm's computational efficiency. For example, to solve a system of n equations for n unknowns by
performing row operations on the matrix until it is in echelon form, and then solving for each unknown in
reverse order, requires n(n + 1)/2 divisions, (2n3 + 3n2 − 5n)/6 multiplications, and (2n3 + 3n2 − 5n)/6
subtractions,[8] for a total of approximately 2n3/3 operations. Thus it has arithmetic complexity of O(n3); see
Big O notation. This arithmetic complexity is a good measure of the time needed for the whole computation
when the time for each arithmetic operation is approximately constant. This is the case when the coefficients are
represented by floating-point numbers or when they belong to a finite field. If the coefficients are integers or

Computing ranks and bases

Computational efficiency
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rational numbers exactly represented, the intermediate entries can grow exponentially large, so the bit
complexity is exponential.[9] However, there is a variant of Gaussian elimination, called the Bareiss algorithm,
that avoids this exponential growth of the intermediate entries and, with the same arithmetic complexity of
O(n3), has a bit complexity of O(n5).

This algorithm can be used on a computer for systems with thousands of equations and unknowns. However,
the cost becomes prohibitive for systems with millions of equations. These large systems are generally solved
using iterative methods. Specific methods exist for systems whose coefficients follow a regular pattern (see
system of linear equations).

To put an n × n matrix into reduced echelon form by row operations, one needs n3 arithmetic operations, which
is approximately 50% more computation steps.[10]

One possible problem is numerical instability, caused by the possibility of dividing by very small numbers. If,
for example, the leading coefficient of one of the rows is very close to zero, then to row-reduce the matrix, one
would need to divide by that number. This means that any error existed for the number that was close to zero
would be amplified. Gaussian elimination is numerically stable for diagonally dominant or positive-definite
matrices. For general matrices, Gaussian elimination is usually considered to be stable, when using partial
pivoting, even though there are examples of stable matrices for which it is unstable.[11]

Gaussian elimination can be performed over any field, not just the real numbers.

Buchberger's algorithm is a generalization of Gaussian elimination to systems of polynomial equations. This
generalization depends heavily on the notion of a monomial order. The choice of an ordering on the variables is
already implicit in Gaussian elimination, manifesting as the choice to work from left to right when selecting
pivot positions.

Computing the rank of a tensor of order greater than 2 is NP-hard.[12] Therefore, if P ≠ NP, there cannot be a
polynomial time analog of Gaussian elimination for higher-order tensors (matrices are array representations of
order-2 tensors).

As explained above, Gaussian elimination transforms a given m × n matrix A into a matrix in row-echelon form.

In the following pseudocode, A[i, j] denotes the entry of the matrix A in row i and column j with the indices
starting from 1. The transformation is performed in place, meaning that the original matrix is lost for being
eventually replaced by its row-echelon form.

h := 1 /* Initialization of the pivot row */ 
k := 1 /* Initialization of the pivot column */ 
 
while h ≤ m and k ≤ n 
    /* Find the k-th pivot: */ 
    i_max := argmax (i = h ... m, abs(A[i, k])) 
    if A[i_max, k] = 0 
        /* No pivot in this column, pass to next column */ 
        k := k+1 
    else 
         swap rows(h, i_max) 
         /* Do for all rows below pivot: */ 
         for i = h + 1 ... m: 
                f := A[i, k] / A[h, k] 
                /* Fill with zeros the lower part of pivot column: */ 
                A[i, k] := 0 
                /* Do for all remaining elements in current row: */ 
                for j = k + 1 ... n: 
                     A[i, j] := A[i, j] - A[h, j] * f 
         /* Increase pivot row and column */ 
         h := h + 1 
         k := k + 1 
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This algorithm differs slightly from the one discussed earlier, by choosing a pivot with largest absolute value.
Such a partial pivoting may be required if, at the pivot place, the entry of the matrix is zero. In any case,
choosing the largest possible absolute value of the pivot improves the numerical stability of the algorithm, when
floating point is used for representing numbers.

Upon completion of this procedure the matrix will be in row echelon form and the corresponding system may be
solved by back substitution.
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